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On the basis of the momentum-balance equation derived from the Boltzmann equation in which electron
interactions with impurities and acoustic and optic phonons are included, we examine the dependence of the
resistivity in graphene on temperature and electron density. Simple analytical expressions for the different
contributions to the resistivity are obtained. Our results reproduce recent experimental findings and we are able
to understand the different temperature dependence of the resistivity for low and high density samples.
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The realization of graphene-based electronic devices is an
important scientific breakthrough.1 Owing to its unique elec-
tronic band structure and the corresponding quasirelativistic
features, graphene has high electronic mobility at relatively
high temperatures up to room temperature. One of the major
advantages of a graphene device is that the carrier density in
the graphene layer can be controlled very effectively through
a gate voltage.1 Hence, graphene has been proposed as a
building block for advanced electronic devices2 such as
graphene p-n and p-n-p junctions,3,4 transistors,5 etc. In re-
cent years, the study of electronic transport properties of
Dirac quasiparticles in graphene has rapidly become an im-
portant research topic in condensed-matter physics and
nanoelectronics,6 because this study is the basis for the ap-
plication of graphene in advanced electronic devices.7 In par-
ticular, very recently experimental work8 has been carried
out in examining the dependence of the resistivity in
graphene on temperature and gate voltage �or electron den-
sity�. It has been found experimentally8 that the resistivity of
graphene samples with different electron densities depends
differently on temperature. Motivated by these important ex-
perimental works and interesting experimental findings, here
we present a detailed theoretical study which is able to re-
produce and to understand the different temperature depen-
dence of low- and high-density graphene samples.

Recently, we developed a simple theoretical approach to
study the quantum and transport conductivities in graphene
at low temperatures where the electron-impurity �e-i� scatter-
ing is the principal channel to limit the transport properties
of a graphene device.9 This approach is based on the
momentum-balance equation derived from the Boltzmann
equation. By including electron interaction with only the
charged impurities, we could calculate the transport coeffi-
cients as a function of carrier density at low temperatures and
the obtained theoretical results were in line with those mea-
sured experimentally. In the present study, we generalize this
approach to the case where the electron-phonon �e-p� inter-
action is also present in the graphene system. Thus, we can
look into the electronic transport properties in graphene at
relatively high temperatures. Here we consider a graphene
sheet in the xy plane placed on top of a SiO2 wafer, similar to
the sample devices used in the experiments.8 A carrier �elec-
tron or hole� in graphene can be described by Weyl’s equa-
tion for a massless neutrino10 and the wave function and

energy spectrum for a carrier in the � bands near the K point
can be obtained analytically.10 We consider the conducting
carriers in graphene to be electrons �i.e., in the presence of
the positive gate voltages� and take e-i and e-p interactions as
perturbations. For simplicity, we consider the charged impu-
rities with effective concentration nI to be located in the SiO2
substrate close to the interface between the graphene and the
substrate. This approximation has resulted in a good agree-
ment between the theoretical results and the experimental
data at low temperatures.9 The electron interaction with
acoustic phonons in graphene is mainly through the deforma-
tion potential coupling.11 Moreover, we employ a valence-
force-field model to describe the electron interaction with
long-wavelength optic phonons in a graphene device.12 Very
recently Mariani and von Oppen13 pointed out that the
electron–flexural-phonon scattering plays an important role
to determine the resistivity � in free-standing graphene be-
low a crossover temperature Tx�70 K via a relation �
�T5/2 ln T. In this study we are interested in a device system
in which the graphene sheet is placed on a SiO2 wafer. For
such a graphene device, the electron density is much higher
than that in a free-standing graphene, which implies that at
low temperatures the resistivity is mainly determined by the
e-i scattering in contrast to the case of a free-standing
graphene. Moreover, for a graphene placed on a dielectric
wafer the deformation potential interaction is enhanced due
to the presence of the strain around the interface between the
graphene sheet and the wafer material. Therefore we neglect
the contribution from flexural-phonon scattering in the
present study.

We employ a semiclassical Boltzmann equation as the
governing transport equation to calculate the transport coef-
ficients in graphene. When a driving dc electric field Fx is
applied along the x direction of the system, the Boltzmann
equation is

− �
eFx

�

� f��k�
�kx

= gsgv �
k�,��

�F����k�,k� − F����k,k��� , �1�

where f��k� is the momentum-distribution function for a car-
rier in a state �k ,��, k= �kx ,ky� is the carrier wave vector,
�= +1 refers to an electron and �=−1 refers to a hole, gs
=2 and gv=2 count for spin and valley degeneracies, and
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F����k ,k��= f��k�W����k ,k�� with W����k ,k�� being the
electronic transition rate induced by electron interactions
with impurities and phonons. W����k ,k�� measures the prob-
ability for scattering of a carrier from a state �k ,�� to a state
�k� ,���, which can often be obtained by using Fermi’s
golden rule. We employ the usual balance-equation
approach14 to calculate the transport coefficients. For the first
moment, the momentum-balance equation9 can be derived by
multiplying gsgv�k,�kx on both sides of the Boltzmann equa-
tion, which reads

eFxne = 16� �
k�,k,��,�

�kx� − kx�f��k�W����k,k�� �2�

with ne being the electron density. We assume that f��k� for
a carrier can be described by a statistic energy distribution
such as the Fermi-Dirac function in which the momentum is
drifted by vx, the drift velocity of the carrier, due to the
presence of the driving field Fx.

14 Considering a weak driv-
ing electric field Fx, so that the condition kFvx /vF�kx is
satisfied, we have, for electron

f+�k� 	 f„E+�k�… − �kFvx�kx/k�f��X��X=E+�k� �3�

and for hole f−�k�	1. Here, kF=
�ne and vF=108 cm /s
are, respectively, the Fermi wave vector and Fermi velocity
for an electron in graphene, f�x�= �e�x−���/kBT+1�−1 with ��

being the chemical potential, f��x�=df�x� /dx, and E��k�
=��k with �=�vF is the energy spectrum for a carrier in
graphene. The result shown in Eq. �3� is equivalent to the
relaxation time approximation on the basis of the Boltzmann
equation.15 By introducing Eq. �3� into Eq. �2� and by the
definition R=Fx /neevx, the ohmic resistivity in graphene at
finite temperature is obtained as

R = −
R0

EF
3�

0

�

dE 	�E��E�E2R�E�
df�E�

dE
, �4�

where R0=h /e2, EF=�kF is the Fermi energy, E is the elec-
tron energy, E�=E for impurity scattering, and E�=E+�
q
and E�=E−�
q for, respectively, phonon absorption and
emission scattering with 
q being the phonon frequency. Fur-
thermore,

R�E� =
2

��2�
�
�

0

�

d��1 − �E�/E�cos ���U��q,���2

with q=
E�2+E2−2E�E cos � /�. We find that the interband
transition contributes very weakly to the resistivity. The
square of the matrix element for electron-impurity scattering
is

�Uim�q,���2 = nI�2�e2




2 1 + cos �

2�q + Ks�2 ,

where Ks is the inverse screening length induced by electron-
electron �e-e� interaction9 and 
 is the dielectric constant for
impurities in the SiO2 wafer. For electron–acoustic-phonon
scattering,

�Uap�q,���2 = � Nq

Nq + 1
��ED

2 q

4�
� 1

vl
+

1

vt

�1 + cos �� ,

where the upper �lower� case refers to phonon absorption
�emission�, the longitudinal and transverse acoustic-phonon
modes are included, Nq= �e�
q/kBT−1�−1 is the acoustic-
phonon occupation number, ED=9 eV is the deformation
potential constant,11 �=6.5�10−8 g /cm2 is the areal density
of the graphene sheet, and vl=2.1�106 cm /s and vt=7.0
�105 cm /s are, respectively, the longitudinal and transverse
sound velocities in the graphene layer.8 The square of the
matrix element for electron–optic-phonon scattering is

�Uop�q,���2 = � N0

N0 + 1
�g2�2,

where the upper �lower� case refers again to phonon absorp-
tion �emission�, the interactions with both longitudinal and
transverse optic-phonon modes are included, N0= �e�
0/kBT

−1�−1 is the optic-phonon occupation number, �
0
=196 meV is the optic-phonon energy at the � point, and
g=��B /b2� /
2��
0 with B�2 and b=a /
3 being the equi-
librium bond length with a=1.42 Å. We note that for
electron–optic-phonon coupling, the terms with scattering
and phonon angles induced by the longitudinal and trans-
verse couplings12 are canceled out. Using the momentum-
balance equation derived from the Boltzmann equation, the
average of the finite-temperature resistivity for graphene
�which has a linear dispersion E�k�, given by Eq. �4�, dif-
fers significantly from the often used averages16,17 such as
��1 /�� , ������dE E�−df�E� /dE��1 /��E� ,��E��.

It can be shown that the strongest effect of the e-e screen-
ing on the e-i scattering is at q→0. Under the usual random-
phase approximation �RPA�,16 limq→0 Ks	4e2
�ne /
1�
with 
1 being the dielectric constant for electrons in
graphene. Considering an air-graphene-substrate system with
the mismatch of the dielectric constants at the interfaces, we
can evaluate 
 and 
1 from the bare dielectric constants for
air, graphene, and the SiO2 wafer using the mirror image
method. We thus obtain 
	4.25 and 
1	2.5. For electron–
acoustic-phonon coupling at relatively high temperatures, so
that �
q�kBT and �
q��k, the scattering is quasielastic.18

In graphene, the optic-phonon energy �
0=196 meV or
2275 K is much higher than room temperature. Furthermore,
for a typical graphene sample, the electron density ne
�1012 cm−2, so that the Fermi energy or temperature EF

=�
�ne�1345 K is about four times larger than room tem-
perature. Taking these features into consideration, up to room
temperature the chemical potential ��	EF− ��kBT�2 /6EF
and the contributions from different scattering mechanisms
to resistivity are obtained approximately as

Rim 	 R0�1.302/
2��nI/ne��1 + ��kBT/EF�2/2� , �5�

which depends on �nI /ne��1+�T2 /ne� with �=�kB
2 /2�2,

Rap 	 R0
ED

2 kBT

2�2�
� 1

vl
2 +

1

vt
2
�1 + ��kBT/EF�2/2� , �6�

which depends on T�1+�T2 /ne�, and
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Rop = R0�2g2��N0I1 + �N0 + 1�I2� , �7�

which depends strongly on temperature and electron density,
where I1=1+�
0 /EF+ ��kBT /EF�2 /2 and

I2 = ��
0/EF�3�
0

�

dx f„�x + 1��
0…�3x2 + 4x + 1� .

In Eqs. �5�–�7� we have obtained the rather simple expres-
sions for resistivity induced by different scattering mecha-
nisms. The total resistivity then is

R = Rim + Rap + Rop. �8�

In our calculation the effective impurity concentration nI is
the only fitting parameter needed for evaluating the
resistivity.

In Fig. 1 we show the resistivity as a function of tempera-
ture at a fixed impurity concentration nI for different electron
densities ne. For low-density samples �e.g., ne=8
�1011 cm−2� the resistivity does not depend linearly on tem-
perature, whereas for high-density samples �e.g., ne=3
�1012 cm−2� a rough R�T relation can be observed. As one
can see, the results shown in Fig. 1 agree both qualitatively
and quantitatively with those measured experimentally.8 In
order to understand why � in graphene depends differently
on T for samples with different ne, we show in Fig. 2 the
contributions from the different scattering mechanisms to the
resistivity. We find that for a low-density sample �e.g., ne
=8�1011 cm−2�, the e-i interaction is the major scattering
channel over a wider temperature range up to 300 K. Be-
cause Rim��1+�T2 /ne�, the behavior R�T2 can be more
easily observed for low-density samples. In contrast, for
high-density samples �e.g., ne=3�1012 cm−2� the electron–
acoustic-phonon scattering becomes significant when T
�50 K. Because Rap�T�1+�T2 /ne�, the behavior R�T is
more pronounced for high-density samples. From Fig. 2, we
see that, in graphene, the acoustic-phonon scattering depends
weakly on the electron density up to room temperature and
the optic-phonon scattering increases rapidly with tempera-
ture for high temperatures.

In Fig. 3, the total resistivity and those induced by differ-
ent scattering mechanisms are shown as a function of elec-
tron density at a fixed impurity concentration for different
temperatures. When ne�6�1011 cm−2, the resistivity is
mainly limited by impurity scattering and, therefore, R

�1 /ne. This is a well-known result observed both experi-
mentally and theoretically.9,16 The electron–optic-phonon
scattering increases rapidly with electron density. At high
temperatures �e.g., T=300 K� the acoustic-phonon coupling
is the main scattering channel to determine the resistivity in
high-density samples, whereas at low temperatures �e.g., T
=30 K� the optic-phonon scattering is the major mechanism
responsible for the resistivity in high-density samples. These
features are in sharp contrast to those observed in III-V-based
two-dimensional electron gas �2DEG� systems. It is known
both experimentally and theoretically19 that in III-V-based
2DEGs: �i� The electron-impurity scattering dominates the
resistivity when T�10 K. �im depends strongly on ne but
very weakly on T. �ii� The electron–acoustic-phonon scatter-
ing is responsible for resistivity when 10�T�50 K. �ac
�T�1 /ne. �iii� The electron–optic-phonon coupling deter-
mines the resistivity when T�50 K, where �op depends
strongly on T but very weakly on ne. As a result, in GaAs-
based 2DEGs the resistivity at T�50 K depends very
weakly on sample parameters such as ne and the width of the
quantum well layer. In contrast, in graphene the temperature
dependence of the resistivity depends on the electron density
of the sample and vice versa.

It should be noted that, in this study, we have considered
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FIG. 1. Temperature dependence of the resistivity for fixed im-
purity concentration nI and different electron densities ne.
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a relatively high-density graphene system realized by placing
the graphene sheet on the dielectric substrate in conjunction
with the published experimental work.8 In high-density
graphene samples the Fermi level �EF=�
�ne� is far from
the Dirac point E=0. Because the transport properties are
determined mainly by electronic transition around the Fermi
level �see Eq. �4��, the nonlinear features around the Dirac
point affect weakly the transport coefficients such as the re-
sistivity. Moreover, for high-density samples we can use the
RPA approximation16 to count the effect of e-e screening. As
a result, the simple approach developed here cannot be ap-
plied to the low-density samples in which the effect of cor-
relation becomes important, where the interaction parameter
�s�1.

In this study, we have developed a simple approach to
examine the resistivity induced by electronic scattering with

impurities and acoustic and optic phonons in graphene that is
placed on top of a SiO2 wafer. The resistivity has been cal-
culated by using only one fitting parameter nI �the effective
impurity concentration� and quantitative agreement with re-
cent experimental results8 can be achieved. The obtained the-
oretical results have been presented by simple analytical ex-
pressions and can be used to understand and to reproduce the
experimental findings. We have confirmed that the depen-
dence of the resistivity on electron density and temperature
in graphene differs significantly from that in III-V-based
2DEG systems.
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